優酷視頻內容數據天然呈現巨大的網絡結構,各類數據實體連接形成了數十億D點和百億條邊的數據量,面對巨大的數據量,傳統關系型數據庫往往難以處理和管理,圖數據結構更加貼合優酷的業務場景,圖組織使用包括D點和邊及豐富屬性圖來展現,隨著年輕化互動數據和內容數據結合,在更新場景形成單類型D點達到日更新上億的消息量。本文將分享阿里文娛開發專家遨翔、玄甫在視頻內容實時更新上的實踐,從圖譜化的全新視角,重新組織內容數據的更新,詮釋圖譜化在業務更新場景的應用。
搜索推薦系統作為在線服務,為滿足在線查詢性能要求,需要將預查詢的數據構建為索引數據,推送到異構儲存介質中提供在線查詢。這個階段主要通過 Offline/Nearline 把實時實體、離線預處理、算法加工數據進行處理更新。這里包含了算法對這些數據離線和在線的處理,不同業務域之間終數據合并(召回、排序、相關性等)。在平臺能力方面采用傳統的數倉模式即圍繞有共性資源、有共性能力方面建設,形成分層策略,將面向業務上層的數據d立出來,而這種模式在實現業務敏捷迭代、知識化、服務化特征方面已不能很好滿足需求。
| 資料獲取 | |
| 服務機器人在展館迎賓講解 |
|
| 新聞資訊 | |
| == 資訊 == | |
| » 機器人的自由度,直接影響到機器人的機動性 | |
| » 機器人系統的結構:機械手、環境、任務 和 | |
| » 2025年智能焊接機器人產業發展藍皮書: | |
| » 商用服務機器人控制系統的組成:任務規劃, | |
| » 具身智能工業場景,精準、重復的任務流程成 | |
| » 智能機器人的傳感器的種類:內部傳 感器和 | |
| » 前臺智能機器人對傳感器的要求:基本性能要 | |
| » 各地對具身智能核心發展需求:產業端落地, | |
| » 2025年中國具身智能產業發展規劃與場景 | |
| » 按控制方式進行分類,機器人分為二種:非伺 | |
| » 按機械手的幾何結構進行分類,機器人分為三 | |
| » 智能安防巡檢機器人的起源與發展歷史,De | |
| » 智能交互機器人的主要部件選型參考方案:伺 | |
| » 智能接待機器人的關節機構設計方案參考:運 | |
| » 智能接待機器人機構設計模型分析:機器人運 | |
| == 機器人推薦 == | |
服務機器人(迎賓、講解、導診...) |
|
智能消毒機器人 |
|
機器人底盤 |
![]() |